Abstract
In the present paper, the linear theory of viscoelasticity for binary porous mixtures is considered. The fundamental solution of the system of steady vibration equations is constructed, and its basic properties are established. Green’s identities of this theory are obtained. The uniqueness theorems for classical solutions of the internal and external basic boundary value problems (BVPs) of steady vibrations are proved. The surface and volume potentials are introduced, and their basic properties are established. The determinants of symbolic matrices of the singular integral operators are calculated explicitly, and the BVPs are reduced to the always solvable singular integral equations for which Fredholm’s theorems are valid. Finally, the existence theorems for classical solutions of the internal and external BVPs of steady vibrations are proved by means of the potential method and the theory of singular integral equations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.