Abstract
ABSTRACTIn this article, the linear theory of binary thermoviscoelastic mixtures is considered and the basic boundary value problems (BVPs) of steady vibrations are investigated. Namely, the fundamental solution of the system of equations of steady vibrations is constructed explicitly and its basic properties are established. Green’s second and third identities are obtained and the uniqueness theorems for classical solutions of the internal and external basic BVPs of steady vibrations are proved. The surface and volume potentials are constructed and their basic properties are given. The determinants of symbolic matrices are calculated explicitly. The BVPs are reduced to the always solvable singular integral equations for which Fredholm’s theorems are valid. Finally, the existence theorems for classical solutions of the internal and external BVPs of steady vibrations are proved by the potential method and the theory of singular integral equations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.