Abstract

Several submerged barges were recently removed from the Passaic River, New Jersey, USA, in two areas (areas 1 and 2) where contaminated sediments are known to exist. During removal of the single barge in area 1, elevated turbidity levels and chemical parameters were measured. Greater increases were measured in area 2, where several barges were removed. In both areas, water column concentrations of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) and several metals exceeded one or more water quality criteria; turbidity levels in area 2 also exceeded regulatory criteria. Potential chemical bioaccumulation from the water column into residential aquatic receptors was estimated using standard models and assumptions. The modeled results predicted that steady-state tissue concentrations of bioaccumulative chemicals would not occur as a result of the brief increase in water column concentrations that occurred during barge removal but that metals and PCDD/Fs could bioaccumulate to levels that exceed regulatory ecological criteria during long-term sediment disturbance activities. In addition, based on some simplistic assumptions regarding settling of suspended sediments, we estimate that chemical bioaccumulation from surface sediments into the food web could result in substantial increases in PCDD/F body burdens in the benthic forage fish, mummichog. Our findings are consistent with the limited number of field studies that have measured increased body burdens of bioaccumulative chemicals following dredging. We suggest that, prior to consideration of extensive dredging as a remedial alternative for any river system, the potential significant and long-term impacts on the food web must be evaluated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.