Abstract
The present research work describes the phyto-synthesis of Manganese dioxide nanoparticles (MnO2NPs) from the reduction of potassium permanganate using Martynia annua (M.annua) plant extract. From the literature review, we clearly understood the M.annua plant has anti-inflammatory activity. Manganese dioxides are important materials due to their wide range of applications. Their increased surface area gives them distinct capabilities, as it increases their mechanical, magnetic, optical, and catalytic qualities, allowing them to be used in more pharmaceutical applications. A detailed review of literature highlighting the issues related to this present work and its knowledge gap that none of the inflammatory activities had been done by MnO2 NPs synthesized from M.annua plant extract. So we selected this study. The product MnO2 NPs showed the wavelength centre at 370 nm and was monitored by UV–Vis spectra. The wave number around 600 cm−1 has to the occurrence of O–Mn–O bonds of pure MnO2 confirmed by FTIR spectroscopy. Transmission electron microscopy images showed the morphology of MnO2 NPs as spherical-shaped particles with average sizes at 7.5 nm. The selected area electron diffraction analysis exhibits the crystalline nature of MnO2 NPs. The obtained MnO2 NPs showed potential antioxidant and anti-inflammatory activity was compared to the plant extract. The synthesized MnO2 NPs have a large number of potential applications in the field of pharmaceutical industries. In the future, we isolate the phytocompounds present in the M.annua plant extract and conduct a study against corona virus. MnO2 produces manganese (III) oxide and oxygen, which increases fire hazard. But further research is required to understand their environmental behaviour and safety.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.