Abstract
Lymphatic filariasis (LF), a mosquito-borne parasitic disease caused by nematode Wuchereria bancrofti in tropical and sub-tropical countries. These nematodes are transferred into the human host when the infected mosquito carrying L3 larvae is released into the bloodstream during the blood ingestion process. The host immune system produces ROS (Reactive Oxygen Species) as a primary defence mechanism to remove the invading filarial worms. However, well-defined antioxidant enzymes of the nematodes scavenge the host-produced ROS to escape from oxidative stress. The enzyme peroxiredoxin 6 (Prx6) belongs to the peroxiredoxin family, catalyses hydrogen peroxide (H2O2) into water (H2O). In order to find the inhibitors that inhibit the activity of peroxiredoxin 6 of W. bancrofti. We performed the homology modelling to predict the WbPrx6 three-dimensional structure using the Schrödinger-Prime and the dynamic stability of the modelled WbPrx6 was analyzed by carrying out the molecular dynamic (MD) simulation for the time scale of 200ns. Further, the structure-based virtual screening shortlisted the hit molecules from the ChemBridge database based on the glide score. The potential lead molecules (ID: 10239274, 11112883, 79879205, 58160895, and 42133744) that have better binding and satisfied the ADMET properties were selected for further complex simulation and DFT calculations. The identified compounds interact with the N-terminal region of the thioredoxin domain, which plays a key role in reducing phospholipase A2 activity. Interestingly, upon binding the lead molecule, the fluctuation of the loop region that connects α-IV with the β-VI plays a vital role in affecting the geometry of the active site, which in turn affects the activity WbPrx6. The outcomes of the present computational studies could help in future drug development and designing of the effective candidate to control Lymphatic filariasis.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have