Abstract

Abstract The atomic structure on the metal side of the electrochemical interface depends on the applied electric potential and the nature of the adsorbing species in the electrolyte solution. In this short article, we review some recent results probing surface stress and surface relaxation effects in single-crystal metal electrodes that are driven by potential changes. Both the potential and the structure in the electrolyte layers at the interface alter the metal electronic structure so that the surface in the electrochemical environment is strongly modified from the ultra-high vacuum counterpart. A methodology for linking experimental and theoretical approaches for a fundamental understanding of electrochemical reactions is proposed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call