Abstract
AbstractPotential‐induced degradation (PID) may be a serious concern in photovoltaic (PV) modules and plants, particularly when approaching high system voltages (1500+ V). Here, we investigate PID occurring in bifacial rear‐emitter silicon heterojunction (SHJ) solar cells encapsulated in a glass/glass (G/G) module configuration with ethylene vinyl acetate (EVA) as an encapsulant. PID testing was performed at 85°C in 85% relative humidity (RH), and the solar cells were subjected to −1 kV and +1 kV for up to 800 h. SHJ cells were found to degrade when subjected to −1 kV, and to a lesser extent when left unbiased in damp heat (DH) conditions, while the application of +1 kV prevented degradation. Although prone to PID after extended test durations, the SHJ mini‐modules investigated in this study noticeably passed the industry standard (IEC 61215:2021) PID test of 96 h. The degradation was primarily characterized by losses in short‐circuit current (ISC) at the front side, followed by fill factor (FF) and open‐circuit voltage (VOC). A cross‐sectional transmission electronic microscopy analysis of the laminates subjected to −1 kV highlighted a transport of sodium (Na) through the transparent conductive oxide (TCO), reaching the amorphous Si/TCO interface. The samples tested in DH conditions and with positive PID test conditions did not exhibit such a migration of Na. To account for these observations, we updated a previously proposed model describing the sensitivity of SHJ cells to water. In our degradation model, moisture in the module corrodes the glass, creating sodium hydroxide (NaOH) that then percolate through the EVA before reaching the SHJ cell. The application of a high negative bias amplifies the previous mechanism by increasing the availability of Na+ and also enhances the drift of Na+ through the EVA to the cell. Finally, we demonstrate that PID can be mitigated or suppressed at the module level by using a high‐volume resistivity encapsulant with a low water vapor transmission rate (WVTR) or by encapsulating SHJ solar cells in a configuration impermeable to water (e.g., using an edge sealant).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Progress in Photovoltaics: Research and Applications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.