Abstract

Microplastics (MPs), as pollutants of environmental concern, are correlated with increased risk of various respiratory diseases. Nevertheless, whether or not MPs have adverse influences on the interfacial properties of lung surfactant (LS), and its effect on the generation of reactive oxygen species are poorly understood. In the present study, natural LS extracted from porcine lungs was used to investigate the interaction with polystyrene as a representative MPs. The results showed that the phase behavior, surface tension, and membrane structure of the LS were altered in the presence of polystyrene. Adsorption experiments demonstrated that in the mixed system of polystyrene and LS (the main active ingredients are phospholipids and proteins), adsorption of phospholipid components by polystyrene was notably higher than that of proteins. Moreover, polystyrene can accelerate the conversion between ascorbic acid and deoxyascorbic acid, thereby producing hydrogen peroxide (HOOH) in simulated lung fluid (containing LS) and further giving rise to an increase in the content of hydroxyl radicals (•OH). This work provides new insight into the potential hazard of MPs in human respiratory system, which is helpful for deeply understanding the unfavorable physicochemical effects of MPs exposure and the role of inhaled MPs on lung health.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.