Abstract
For marine fish, the influence of maternal provisioning on offspring sensitivity to high carbon dioxide (CO2) conditions remains unknown. We separately reared offspring obtained from five wild-caught Atlantic silverside (Menidia menidia) females from fertilization to 16 days post hatch under contrasting CO2 conditions (ambient: ~400μatm, acidified: ~2,300μatm), testing whether average survival during the embryo and larval stage, hatch length, final length, and growth rates were affected by CO2, female identity, or their interaction. Average trait responses did not significantly differ between treatments (CO2 or female identity), however, significant CO2×female identity interactions indicated that females produced offspring with different average CO2 sensitivities. We then examined whether differential egg provisioning with fatty acids (FA) may partially explain the observed differences in offspring CO2 sensitivities. Concentrations of 27 FAs in the unfertilized eggs of each female were measured. Cumulative absolute FA levels were negatively related to hatch length and to the log-transformed CO2 response ratio of hatch length. Eggs with lower concentrations of 20:1n9 and 22:5n3 resulted in offspring where embryo survival was negatively impacted by high CO2. Eggs with higher concentrations of 18:3n3, 18:4n3, and 22:6n3 produced shorter offspring at hatching under high CO2 conditions. These results indicate that maternal provisioning might be an additional determinant of CO2 sensitivity in fish early life stages. Acidification experiments should therefore utilize large numbers of parents from different natural conditions and, where possible, track heritage.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Experimental Marine Biology and Ecology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.