Abstract
Fuel combustion generates a mammoth extent of heat in the engine's combustion chamber. The high temperature of combustion gases makes the engine prone to seizure. To alleviate the severity of overheating, efficient heat removal is needed. In the current research, the potential evaluation of low concentration Fe2O3/water nanocoolant for automotive cooling has been performed experimentally. Three concentrations (0.003, 0.005, and 0.007 vol%) of Fe2O3/water nanocoolant with three different inlet temperatures (45, 50, and 55 °C) and five flowrates (10–14 LPM) were opted to appraise the performance of nanocoolant based automotive cooling system. As per the experimental results, the topmost enhancement in heat transfer rate was observed to be 21.89% for 0.007 vol% Fe2O3/water nanocoolant as compared to water. Furthermore, a 20.65% hike in convective heat transfer coefficient (CHTC), 18.24% escalation in Nusselt number, and 19.51% augmentation in overall heat transfer coefficient (OHTC) were obtained for the nanocoolant of the aforementioned concentration. All the parameters were observed to mount with mounting concentration and flowrate of the nanocoolant, however, the inlet temperature of the nanofluid did not produce significant effects. Results of the current research are exceedingly encouraging since an inordinate enhancement in performance parameters has been observed even at a low concentration of nanocoolant.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.