Abstract

Magnetoelectric (ME) effect at Co2MnSi/BaTiO3 (001) interfaces is demonstrated by using the first-principle calculations. Within paraelectric state, the calculated phase diagram reveals that the modified MnMn/TiO2 (MM/TO) interface could be stabilized under Mn-rich and Co-rich condition. Compared with previous Fe/BaTiO3 (Duan C. G. et al., Phys. Rev. Lett., 97 (2006) 047201) and Fe3O4/BaTiO3 (Niranjan M. K. et al., Phys. Rev. B, 78 (2008) 104405) interfaces, more net change in interface magnetization can be achieved at MM/TO interface when electric polarization reverses. The results suggest a sizable interface ME effect may be attained at Mn-rich Co2MnSi/BaTiO3 (001) interface, hence potential application in the area of electrically controlled magnetism.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.