Abstract

A new potential energy surface for the O((3)P) + H(2) system in the lowest (3)A(") state is built using ab initio data calculated by Rogers et al. [J. Phys. Chem. A 104, 2308 (2000)] and the double many-body expansion formalism. It incorporates a semiempirical model of long-range interactions, which should play an important role at low collision energies. Preliminary quasiclassical trajectory results at 12.6 kcal/mol collision energy, show that the deeper van der Waals region described in this new surface translates into a four times higher cross section than that of Rogers' (3)A(") surface. To confirm this hypothesis, a second surface was calibrated. The two surfaces are fitted with rmsd<0.5 kcal/mol and differ mainly on the depth of the van der Waals region. That difference in the van der Waals region corresponds to a 22% lower cross section of the less deep surface, which is still three times higher than the equivalent results from Rogers' (3)A(") surface. This study reflects the importance of a correct description of van der Waals forces on potential energy surfaces.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.