Abstract

The emerald ash borer (EAB; Agrilus planipennis) is an invasive beetle that causes almost complete mortality of ash trees (Fraxinus spp.) in North America and Europe. Northern temperate wetlands, where black ash (F. nigra) is a dominant and foundation species, will likely undergo dramatic shifts after EAB invasion. Utilizing published knowledge on amphibian and aquatic invertebrate responses to environmental gradients and the effects of ash loss on forest structure and function, we provide a mechanistic framework to discuss how changes in hydrology, canopy structure, and litter inputs could affect wetland communities. Changes in leaf litter could affect primary production and food web structure in the aquatic environment; overall changes in habitat structure might shift the community to species with longer aquatic stages that prefer open-canopy habitats. Amphibians and aquatic invertebrates serve as linkages between aquatic and terrestrial ecosystems. Therefore, understanding how the abundance and functional diversity of these taxa change in response to EAB is necessary to understand whole ecosystem responses. Using a mechanistic framework to formulate hypotheses and predictions is vital for our ability to manage target systems, retain biodiversity, and sustain ecosystem function.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.