Abstract
Two experiments were performed to determine the extent to which ash species (black, green and white) and larval developmental stage (second, third and fourth instar) affect the efficiency of phloem amino acid utilization by emerald ash borer (EAB) Agrilus planipennis Fairmaire (Coleoptera: Buprestidae) larvae. EAB larvae generally utilized green ash amino acids more efficiently than those of the other two species. For example, the concentrations of only six (two essential) and seven (two essential) amino acids were lower in frass from EAB that fed upon black and white ash than in the corresponding phloem, respectively. By contrast, concentrations of 16 (eight essential) amino acids were lower in the frass from EAB that fed upon green ash than in the phloem. In addition, in green ash, the frass : phloem ratios of 13 amino acids were lower than their counterparts in black and white ash. The concentrations of non‐essential amino acids glycine and hydroxylproline were greater in frass than in phloem when EAB fed on black ash, although not when EAB fed on green or white ash. The concentration of total phenolics (a group of putative defensive compounds to EAB, expressed as antioxidant activity of acetone extraction) was high in EAB frass but even higher in the phloem samples when the data were pooled across ash species and EAB larval stages. This suggests EAB larvae may eliminate phenolics through a combination of direct excretion and enzymatic conversion of phenolics to nonphenolics before excretion. Because the ratio of frass total phenolics to phloem total phenolics in white ash was lower than the ratios in black and green ash, the ability to destroy phenolics or convert them to nonphenolics was greater when EAB larvae fed on white ash. Fourth‐instar EAB extracted phloem amino acids, including threonine, more efficiently than third‐instar EAB. The different larval developmental stages of EAB did not differ in their apparent ability to destroy phenolics or convert them to nonphenolics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.