Abstract
Monitoring agricultural areas is still a very challenging task. Various models and methodologies have been developed for monitoring the agricultural areas with satellite images, but their practical applicability is limited due to the complexity in processing and dependence on a priori information. Therefore, in this paper, an attempt has been made to investigate the utility of the Kanade–Lucas–Tomasi (KLT) tracker, which is generally useful for tracking objects in video images, for monitoring agricultural areas. The KLT tracker was proposed to deal with the problem of image registration, but the use of the KLT tracker in satellite images for land cover monitoring is rarely reported. Advanced Land Observing Satellite Phased Array type L-band Synthetic Aperture Radar (ALOS PALSAR) data has been used to identify and track the agricultural areas. The tracked pixels were compared with the agriculture pixels obtained from a decision tree algorithm and both results are closely matched. An image differencing change detection technique has been applied after KLT tracker implementation to observe the “change” and “no change” pixels in agricultural areas. It is observed that two kinds of changes are being detected. The areas where agriculture was not there earlier, but now is present, the changes are called positive changes. In the areas where agriculture was present earlier, but now is not present, those changes are referred to as negative changes. Unchanged areas retrieved from both the images are labeled as “no change” pixels. The novelty of the proposed algorithm is that it uses a simplified version of the KLT tracker to efficiently select and track the agriculture features on the basis of their spatial information and does not require a priori information every time.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have