Abstract

The excellent anticorrosion property of geopolymers in sea water and their efficient bonding to hardened cement paste did not only depend on the chemical compositions but were also influenced by the microstructure. This study presents an investigation into the interfaces between the geopolymer and cement paste and mortar and the pore structure of geopolymers by scanning electron microscopy (SEM), mercury intrusion porosimetry (MIP) and Brunauer–Emmett–Teller (BET) nitrogen adsorption. The interface between the geopolymer and cement paste was compact and its chemical composition changed due to the reaction between the geopolymer slurry and the surface of cement. Open pores in the geopolymer synthesized with 90% metakaolin (MK) and 10% granulated blast furnace slag (GBFS) were < 15 nm in an average, thus much smaller than the average open pore size in ordinary Portland cement (OPC) paste. The compact microstructure of the geopolymer made it difficult for sea water to penetrate. The amorphous aluminosilicate geopolymeric gels, which were chemically stable in sea water or in air, provided a sustainable protection for marine concrete structures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.