Abstract

Electrochemical reduction of CO2 into valuable fuels and chemicals is a promising route of replacing fossil fuels by reducing CO2 emissions and minimizing its adverse effects on the climate. Tremendous efforts have been carried out for designing efficient catalyst materials to selectively produce the desired product in high yield from CO2 by the electrochemical process. In this work, a strategy is reported to enhance the electrochemical CO2 reduction reaction (ECO2RR) by constructing an interface between a metal-based alloy (PdIn) nanoparticle and an oxide (In2O3), which was synthesized by a facile solution method. The oxide-derived PdIn surface has shown excellent eCO2RR activity and enhanced CO selectivity with a Faradaic efficiency (FE) of 92.13% at -0.9 V (vs RHE). On the other hand, surface PdO formation due to charge transfer on the bare PdIn alloy reduces the CO2RR activity. With the support of in situ (EXAFS and IR) and ex situ (XPS, Raman) spectroscopic techniques, the optimum presence of the Pd-In-O interface has been identified as a crucial parameter for enhancing eCO2RR toward CO in a reducing atmosphere. The influence of eCO2RR duration is reported to affect the overall performance by switching the product selectivity from H2 (from water reduction) to CO (from eCO2RR) on the oxide-derived alloy surface. This work also succeeded in the multifold enhancement of the current density by employing the gas diffusion electrode (GDE) and optimizing its process parameters in a flow cell configuration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.