Abstract
Massive amounts of data that characterize how people meet their economic needs, interact within social communities, and use shared resources are being produced by cities. Harnessing these ever-increasing data streams is crucial for understanding urban dynamics. Within the context of transportation modeling, it still remains largely unknown whether or not these new data sources provide the opportunity to better understand spatial processes. Therefore, in this article, the usefulness of a recently available big transport data set—the New York City taxi trip data—is evaluated within a spatial interaction modeling framework. This is done by first comparing parameter estimates from a model using the taxi data to parameter estimates from a model using a traditional commuting data set. In addition, the high temporal resolution of the taxi data provides an exciting means to explore potential dynamics in movement behavior. It is demonstrated how parameter estimates can be obtained for temporal subsets of data and compared over time to investigate mobility dynamics. The results of this work indicate that a pitfall of big transport data is that it is less useful for modeling distinct phenomena; however, there is a strong potential for modeling high-frequency temporal dynamics of diverse urban activities.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.