Abstract

BackgroundThe predictive value of 18F-fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT) metabolic parameters for predicting AIP relapse is currently unknown. This study firstly explored the value of 18F-FDG PET/CT parameters as predictors of type 1 AIP relapse.MethodsThis multicenter retrospective cohort study analyzed 51 patients who received 18F-FDG PET/CT prior to treatment and did not receive maintenance therapy after remission. The study collected baseline characteristics and clinical data and conducted qualitative and semi-quantitative analysis of pancreatic lesions and extrapancreatic organs. The study used three thresholds to select the boundaries of pancreatic lesions to evaluate metabolic parameters, including the maximum standard uptake value (SUVmax), mean standard uptake value (SUVmean), total lesion glycolysis (TLG), metabolic tumor volume (MTV), and tumor-to-normal liver standard uptake value ratio (SUVR). Univariate and multivariate analyses were performed to identify independent predictors and build a recurrence prediction model. The model was internally validated using the bootstrap method and a nomogram was created for clinical application.ResultsIn the univariable analysis, the relapsed group showed higher levels of SUVmax (6.0 ± 1.6 vs. 5.2 ± 1.1; P = 0.047), SUVR (2.3 [2.0–3.0] vs. 2.0 [1.6–2.4]; P = 0.026), and TLG2.5 (234.5 ± 149.1 vs. 139.6 ± 102.5; P = 0.020) among the 18F-FDG PET metabolic parameters compared to the non-relapsed group. In the multivariable analysis, serum IgG4 (OR, 1.001; 95% CI, 1.000–1.002; P = 0.014) and TLG2.5 (OR, 1.007; 95% CI, 1.002–1.013; P = 0.012) were independent predictors associated with relapse of type 1 AIP. A receiver-operating characteristic curve of the predictive model with these two predictors demonstrated an area under the curve of 0.806.Conclusion18F-FDG PET/CT metabolic parameters, particularly TLG2.5, are potential predictors for relapse in patients with type 1 AIP. A multiparameter model that includes IgG4 and TLG2.5 can enhance the ability to predict AIP relapse.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.