Abstract

Due to continuous contamination of groundwater by anthropogenic activities, potable water fetches numerous pollutants such as pathogens, pharmaceuticals, and heavy metals, with these being severe health hazards. The main aim of the current study was to develop a hybrid unit based on catalytic ozonation and the filtration process to effectively remove the contaminants in drinking water. To the best of our knowledge, in the current study, the Fe-Zeolite 4A (Fe-Z4A)/O3 process followed by filtration involving rice husk and activated carbons were studied for the first time in order to treat drinking water. In the current investigation, fecal coliforms, arsenic, pharmaceuticals, turbidity, and TDS removal were investigated in a novel hybrid reactor. The results showed 100%, 45%, 40%, 70%, and 95% fecal coliform, arsenic, TDS, paracetamol, and turbidity removal efficiency, respectively. The results further indicated that all the studied drinking water samples followed WHO guidelines and NEQS for drinking water quality after the proposed treatment. Therefore, it is concluded that the proposed hybrid process implies a single unit is highly efficient for drinking water treatment. The designed novel hybrid reactor treatment can be scaled up in the future for household or commercial use.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.