Abstract

Nitration of a critical tyrosine residue in the active site of manganese superoxide dismutase (MnSOD) can lead to enzyme inactivation. In this study, we examined the effect of inducible nitric oxide synthase (iNOS) on MnSOD expression, activity and nitration in acutely rejecting cardiac transplants. Lewis (isograft) or Wistar-Furth (allograft) donor hearts were transplanted into Lewis recipient rats. Some rats received L-N6-(1-iminoethyl) lysine (l-NIL), a specific iNOS inhibitor. Protein nitration was determined by immunohistochemical, Western blot and slot-blot analyses. MnSOD enzyme activity and gene expression were determined using Western, reverse transcriptase-polymerase chain reaction (RT-PCR) and immunoprecipitation techniques. MnSOD protein levels were decreased 50% by post-operative day 6 (POD 6), which was prevented by L-NIL. RT-PCR analysis indicated that this decrease could not be explained by any changes in MnSOD mRNA. MnSOD enzyme activity but not protein was decreased at POD 5 in untreated allografts. The loss of MnSOD activity at POD 5 was also prevented by L-NIL. Immunoreactive nitrotyrosine was apparent in untreated allografts at POD 6. Slot-blot analysis indicated that nitrotyrosine formation in allografts could be blocked by L-NIL. Nitration of MnSOD was evident upon immunoprecipitation of MnSOD followed by Western blotting for nitrotyrosine. These results suggest that the decreased MnSOD enzyme activity in acutely rejecting cardiac allografts can be attributed to a post-translational modification related to nitration arising via an iNOS-dependent pathway. This could be a potential major source of amplified oxidative stress in acute graft rejection.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.