Abstract

We report here evidence for endogenous NO signalling in long-term (>1 h) synaptic depression at the neuromuscular junction induced by 20 min of 1 Hz nerve stimulation. Synaptic depression was characterized by a 46% reduction in the end-plate potential (EPP) amplitude and a 21% decrease in miniature EPP (MEPP) frequency, but no change to MEPP amplitude, indicating a reduction in evoked quantal release. Both the membrane-impermeant NO scavenger cPTIO and the NOS inhibitor L-NAME blocked depression, suggesting that it is induced by NO originating from a source outside the terminal. The depression was dependent on activation of muscle-type, but not neuronal-type, nAChRs and was still observed when Ca2+ release from the sarcoplasmic reticulum and muscle contraction were blocked with dantrolene. These data suggest that the depression depends on transmission, but not muscle contraction. The calcineurin inhibitors cyclosporin A and FK506, as well as ODQ, an inhibitor of NO-sensitive soluble guanylyl cyclase, Rp-8-pCPT-cGMPS, an inhibitor of cGMP-dependent protein kinase, and the calmodulin antagonist phenoxybenzamine also blocked depression. We propose that low frequency synaptic transmission leads to production of NO at the synapse and depression of transmitter release via a cGMP-dependent mechanism. The NO could be generated either directly from the muscle, or possibly from the Schwann cell in response to an unidentified muscle-derived messenger. We showed that the long-lasting depression of transmitter release was due to sustained activity of the NO signalling pathway, and suggest dephosphorylation of NOS by calcineurin as the basis for continued NO production.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.