Abstract

The formation of CNS circuits is characterized by the coordinated development of neuronal structure and synaptic function. The activity-regulated candidate plasticity gene 15 (cpg15) encodes a glycosylphosphatidylinositol (GPI)-linked protein whose in vivo expression increases the dendritic arbor growth rate of Xenopus optic tectal cells. We now demonstrate that tectal cell expression of CPG15 significantly increases the elaboration of presynaptic retinal axons by decreasing rates of branch retractions. Whole-cell recordings from optic tectal neurons indicate that CPG15 expression promotes retinotectal synapse maturation by recruiting functional AMPA receptors to synapses. Expression of truncated CPG15, lacking its GPI anchor, does not promote axon arbor growth and blocks synaptic maturation. These results suggest that CPG15 coordinately increases the growth of pre- and postsynaptic structures and the number and strength of their synaptic contacts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.