Abstract

Stall followed by surge in a high speed compressor can lead to violent disruption of flow, damage to the blade structures and, eventually, engine shutdown. Knowledge of unsteady blade loading during such events is crucial in determining the aeroelastic stability of blade structures; experimental test of such events is, however, significantly limited by the potential risk and cost associated. Numerical modeling, such as unsteady computational fluid dynamics (CFD) simulations, can provide a more informative understanding of the flow field and blade forcing during poststall events; however, very limited publications, particularly concerning multistage high speed compressors, can be found. The aim of this paper is to demonstrate the possibility of using CFD for modeling full-span rotating stall and surge in a multistage high speed compressor, and, where possible, validate the results against experimental measurements. The paper presents an investigation into the onset and transient behavior of rotating stall and surge in an eight-stage high speed axial compressor at off-design conditions, based on 3D Reynolds-averaged Navier–Stokes (URANS) computations, with the ultimate future goal being aeroelastic modeling of blade forcing and response during such events. By assembling the compressor with a small and a large exit plenum volume, respectively, a full-span rotating stall and a deep surge were modeled. Transient flow solutions obtained from numerical simulations showed trends matching with experimental measurements. Some insights are gained as to the onset, propagation, and merging of stall cells during the development of compressor stall and surge. It is shown that surge is initiated as a result of an increase in the size of the rotating stall disturbance, which grows circumferentially to occupy the full circumference resulting in an axisymmetric flow reversal.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call