Abstract

Stall followed by surge in a high speed compressor can lead to violent disruption of flow, damage to the blade structures and, eventually, engine shutdown. A knowledge of unsteady blade loading during such events is crucial in determining the aeroelastic stability of blade structures, experimental test of such events is however significantly limited by the potential risk and cost associated. Numerical modelling, such as unsteady CFD simulations, can provide a more informative understanding of the flow field and blade forcing during post-stall events, however very limited publications, particularly concerning multi-stage high speed compressors, can be found. The aim of this paper is to demonstrate the possibility of using CFD for modelling full-span rotating stall and surge in a multi-stage high speed compressor, and, where possible, validate the results against experimental measurements. The paper presents an investigation into the onset and transient behaviour of rotating stall and surge in an 8-stage high speed axial compressor at off-design conditions, based on 3D URANS computations, with the ultimate future goal being aeroelastic modelling of blade forcing and response during such events. By assembling the compressor with a small and a large exit plenum volume respectively, a full-span rotating stall and a deep surge were modelled. Transient flow solutions obtained from numerical simulations showed trends matching with experimental measurements. Some insights are gained as to the onset, propagation and merging of stall cells during the development of compressor stall and surge. It is shown that surge is initiated as a result of an increase in the size of the rotating stall disturbance, which grows circumferentially to occupy the full circumference resulting in an axisymmetric flow reversal.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.