Abstract

The decision tree (DT) induction process has two major phases: the growth phase and the pruning phase. The pruning phase aims to generalize the DT that was generated in the growth phase by generating a sub-tree that avoids over-fitting to the training data. Most post-pruning methods essentially address post-pruning as if it were a single objective problem (i.e. maximize validation accuracy), and address the issue of simplicity (in terms of the number of leaves) only in the case of a tie. However, it is well known that apart from accuracy there are other performance measures (e.g. stability, simplicity, interpretability) that are important for evaluating DT quality. In this paper, we propose that multi-objective evaluation be done during the post-pruning phase in order to select the best sub-tree, and propose a procedure for obtaining the optimal sub-tree based on user provided preference and value function information.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.