Abstract

The effects of feeding (meal of 3% of body mass) on acid-base and nitrogen homeostasis were investigated in the seawater acclimated green shore crab, Carcinus maenas. Feeding did not change gastric fluid pH (~pH 6); however, feeding was associated with a respiratory acidosis. Hemolymph HCO3− did not increase during this acidosis, although titratable and net acid efflux changed from an uptake to an excretion. Feeding affected the crabs' nitrogen homeostasis causing a substantial increase in hemolymph ammonia and urea concentrations after six hours. At this point, hemolymph urea accounted for ~1/3 of nitrogenous waste accumulated within the hemolymph, suggesting a potential role in ammonia detoxification. The postprandial increase in hemolymph ammonia coincided with an 18-fold increase in ammonia excretion rates that accounted for the majority of net acid excreted by the crabs. Urea excretion rates did not increase after feeding; however, branchial urease activity increased, implying that the gills may possess a mechanism to form excretable ammonia through the catabolism of urea. Our results demonstrate that despite an acidic gastric compartment, C. maenas does not experience a postprandial alkaline tide and that any feeding related acid-base challenges are primarily derived from metabolic acid production. Our findings also indicate that unlike the bicarbonate buffering acid-base compensatory response induced by hypercapnia and emersion, acid-base challenges upon feeding are compensated through changes in the excretion of acid equivalents, mainly in the form of ammonia.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.