Abstract

We introduce the concept of post-placement interconnect entropy: the minimal number of bits required to describe a well-placed netlist, which has connection lengths distributed according to Rent's rule. The entropy is a function of the number N of cells in the netlist and the Rent exponent p. We derive an expression for the entropy per cell and show that it converges as N approaches infinity. The entropy provides an achievable lower bound on the number of configuration bits in a programmable logic device. Specific numerical values are computed for practical situations. For example, any scalable FPGA composed of 4-input lookup table cells would require 31 configuration bits per cell. We compare this to the actual number of configuration bits in a standard FPGA architecture. We generalize the bound to dimensions higher than two, and show that for any p there is an optimal dimension that minimizes the bound.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.