Abstract

Light and electron microscopic autoradiography demonstrates that 3H-GABA is accumulated by horizontal cells in neonatal rabbit retina but not in the adult. A specific population of horizontal cells appears to be mature at birth and they avidly accumulate 3H-GABA during a 15-minute incubation period in vitro. Uptake into horizontal cells is not observed after the fifth postnatal day; 3H-GABA-accumulating horizontal cell bodies and their processes are the first identifiable components that clearly mark the future location of the outer plexiform layer at birth and as such, may be considered pioneering elements. Our observations raise the interesting possibility that the pioneering horizontal cell may provide structural and/or chemical factors necessary for the subsequent development of the outer plexiform layer of the retina. Labeling patterns of other retinal cells also show varying degrees of change during development. A population of amacrine cells accumulate 3H-GABA at birth. These cells show little change in their morphological or 3H-GABA uptake properties from birth to adulthood. Müller cells show weak accumulation of 3H-GABA at birth. Subsequent to this time, labeling of Müller cells is significantly more robust, resulting in Müller cell domination of retinal autoradiographic patterns in more mature retinas. Every cell body in the ganglion cell layer accumulates 3H-GABA at birth. The number of labeled cells declines during postnatal development, resulting in a very limited adult population. We conclude that the ability of retinal cells to accumulate 3H-GABA does not remain constant during postnatal development; rather each cell population displays a unique maturation sequence that results in a dramatic developmental shift in the number and types of GABA-accumulating cells present in the retina.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call