Abstract

Despite the fact that a variety of experimental techniques have been devised over the years to induce tetraploid mammalian embryonic development, success rates to date have been limited. Apart from the early study by Snow, who obtained development to term of a limited number of cytochalasin B-induced tetraploid mouse embryos, no other researchers have achieved development of tetraploid embryos beyond the early postimplantation period. We now report advanced postimplantation development of tetraploid mouse embryos following electrofusion of blastomeres at the 2-cell stage, and subsequent transfer of these 1-cell 'fused' embryos to appropriate recipients. Cytogenetic analysis of the extraembryonic membranes of all of the postimplantation embryos encountered in the present study has provided an unequivocal means of confirming their tetraploid chromosome constitution. A preliminary morphological and histological analysis of the tetraploid embryos obtained by this technique has revealed that characteristic craniofacial abnormalities particularly involving the forebrain and eyes were consistently observed, and these features were often associated with abnormalities of the vertebral axis and heart. The most advanced viable embryo in this series was recovered on the 15th day of gestation, and its morphological features suggest that it was developmentally equivalent to a normal embryo of about 13.5-14 days p.c.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.