Abstract

This study evaluates the post-hatching development of in vitro-produced (IVP) embryos until Day 14. On Day 7, IVP embryos were either transferred to recipient uteruses or placed in a post-hatching development (PHD) system. As a control group, in vivo-produced (IVV), Day-7 embryos were also transferred to recipient uteruses. All groups were collected on Day 14 and were morphologically evaluated. Day-7 and Day-14 IVV and IVP embryos were used for quantification of eight genes (PLAC8, CD9, SLC2A1, SLC2A3, KRT8, SOD2, HSP1A1, and IFNT2) by reverse transcriptase qPCR. Day-14 embryos from the PHD system were smaller (2.92 ± 0.45 mm) and had a lower embryonic disk diameter (0.14 ± 0.00 mm) than those produced by IVV (24.18 ± 3.71; 0.29 ± 0.03 mm, respectively) or IVP (19.06 ± 2.43; 0.28 ± 0.01 mm) culture and transferred to the uterus (P > 0.05). Day-7 IVP embryos had a higher expression of the HSP1A1, SCL2A1, and SCL2A3 genes than IVV embryos. When these embryos were cultured in the uterus, no differences in gene expression were observed on Day 14. Conversely, Day-14 IVP embryos cultured in the PHD system showed a higher expression of PLAC8, SOD2, and SLC2A3 genes. It is concluded that Day-7 IVP embryos are different from IVV embryos in regards to gene expression, although exposure to the uterine environment during the elongation period allowed the IVP embryos to overcome this difference. In contrast, IVP embryos cultured in the PHD system were morphologically and molecularly different, being of poorer quality than those cultured in the uterus.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call