Abstract

Abstract Cold-frontal passages over the Gulf of Mexico in late winter or early spring are frequently followed by return-flow episodes in which modified polar air and warm, moist tropical air move toward the Gulf coast. While both advection and airmass modification due to boundary-layer physics are important in this sequence of events, the relative roles of these processes are unclear. In the present study, the authors utilize data from the Gulf of Mexico Experiment and two distinctive numerical models in addressing this issue. In forecasts of a return-flow event, trajectory computations are performed using a mesoscale numerical weather prediction model to determine the source regions of air arriving on the coat at several different levels. A one-dimensional airmass transformation model is also used in order to delineate boundary-layer physical processes. Simulations were conducted at two sites along the Gulf coast to investigate geographic variability in this return-flow episode, including the effect on b...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call