Abstract

Generalized linear mixed models with semiparametric random effects are useful in a wide variety of Bayesian applications. When the random effects arise from a mixture of Dirichlet process (MDP) model with normal base measure, Gibbs samplingalgorithms based on the Pólya urn scheme are often used to simulate posterior draws in conjugate models (essentially, linear regression models and models for binary outcomes). In the nonconjugate case, some common problems associated with existing simulation algorithms include convergence and mixing difficulties.This article proposes an algorithm for MDP models with exponential family likelihoods and normal base measures. The algorithm proceeds by making a Laplace approximation to the likelihood function, thereby matching the proposal with that of the Gibbs sampler. The proposal is accepted or rejected via a Metropolis-Hastings step. For conjugate MDP models, the algorithm is identical to the Gibbs sampler. The performance of the technique is investigated using a Poisson regression model with semi-parametric random effects. The algorithm performs efficiently and reliably, even in problems where large-sample results do not guarantee the success of the Laplace approximation. This is demonstrated by a simulation study where most of the count data consist of small numbers. The technique is associated with substantial benefits relative to existing methods, both in terms of convergence properties and computational cost.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.