Abstract
The combined estimation for the semiparametric panel data models is proposed. The properties of estimators for the semiparametric panel data models with random effects (RE) and fixed effects (FE) are examined. When the RE estimator suffers from endogeneity due to the individual effects correlated with the regressors, the semiparametric RE and FE estimators may be adaptively combined, with the combining weights depending on the degree of endogeneity. The asymptotic distributions of these three estimators (RE, FE, and combined estimators) for the semiparametric panel data models are derived using a local asymptotic framework. These three estimators are then compared in asymptotic risk. The semiparametric combined estimator has strictly smaller asymptotic risk than the semiparametric fixed effect estimator. The Monte Carlo study shows that the semiparametric combined estimator outperforms semiparametric FE and RE estimators except when the degrees of endogeneity and heterogeneity of the individual effects are very small. Also presented is an empirical application where the effect of public sector capital in the private economy production function is examined using the US state level panel data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.