Abstract

The precuneus, involved in various cognitive processes, is considered to form the midline core of the default mode network (DMN), while the medial temporal lobe (MTL) is a subsystem of the DMN. Until now, the anatomical study of the precuneus-MTL connection is limited in humans. One possible reason is the precuneus’ territory of the posteromedial cortex (PMC) is inconsistent across studies. The primary purpose of this study is to investigate the structural connectivity (SC) of precuneus-MTL, focusing on its anatomical organization using the Human Connectome Project Multi-modal Parcellation (HCP MMP) atlas. We first conducted the quantitative tractography analyses using the HCP dataset. The major streamlines originated from the posterior precuneus and were projected to the MTL extensively. Next, to complement the tractography data, we conducted the white matter dissection in the post-mortem human brain. We observed the major fiber bundles arise from the posterior precuneus extending to the anterior parahippocampal gyrus, which could support our tractography results. Then we analyzed the relationship between SC and resting-state functional connectivity (rsFC) of the precuneus-MTL. Although the SC-rsFC correlation was scarce on the whole, the posterior precuneus (POS2, 7Pm, 7m) showed a relatively high correlation (r = 0.38349, p < 0.05) with the posterior MTL (PreS, H, ProS, PHA1, PHA2). Our findings suggest the posterior precuneus is highly connected to MTL structurally, which could have an effect on the resting-state functional connectivity. In addition, the precuneus might consist of the heterogeneous connectivity-based subdivisions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call