Abstract

The high molecular weight (HMW) size variants present in therapeutic monoclonal antibody (mAb) samples need to be closely monitored and characterized due to their impact on product safety and efficacy. Because of the complexity and often low abundances in final drug substance (DS) samples, characterization of such HMW species is challenging and traditionally requires offline enrichment of the HMW species followed by analysis using various analytical tools. Here, we report the development of a postcolumn denaturation-assisted native SEC-MS method that allows rapid and in-depth characterization of mAb HMW species directly from unfractionated DS samples. This method not only provides high-confidence identification of HMW complexes based on accurate mass measurement of both the intact assembly and the constituent subunits but also allows in-depth analysis of the interaction nature and location. In addition, using the extracted ion chromatograms, derived from high-quality, native-like mass spectra, the elution profiles of each noncovalent and/or nondissociable complex can be readily reconstructed, facilitating the comprehension of a complex HMW profile. The utility of this novel method was demonstrated in different applications, ranging from enriched HMW characterization at late stage development, comparability assessment due to process changes, and forced degradation study of coformulated mAbs. As this method does not require prior enrichment, it is thus desirable for providing both rapid and in-depth characterization of HMW species during the development of therapeutic mAbs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.