Abstract

This report shows different fabrication procedures followed to obtain piezoelectric microcantilevers. The proposed microcantilever is a sandwich structure composed of chromium (Cr) electrodes (from 50 to 300-nm thick) and a reactive sputtered piezoelectric aluminum nitride (AlN) thin film (from 350 nm to 600-nm thick). The microcantilevers top-view dimensions ranged from 50 to 300 μm in width and from to 250 to 700 μm in length. Several materials such as nickel silicide and nickel, as well as a photoresist, and finally the silicon substrate surface have been investigated to discern their possibilities and limitations when used as sacrificial layers. These materials have been studied to determine the optimal processing steps and chemistries required for each of them. The easiest and the only successful microcantilevers release was finally obtained using the top silicon substrate surface as a sacrificial layer. The structural and morphological characteristics of the microcantilevers are presented as well as their piezoelectric character. The main difference of this work resides in the Si surface-based microcantilever release technique. This, along with the synthesis of AlN at room temperature by reactive sputtering, establishes a manufacturing procedure for piezoelectric microbeams, which makes possible the integration of such MEMS devices into postCMOS technology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.