Abstract

This paper investigates the postbuckling analysis of a viscoelastic microbeam embedded in a double layer viscoelastic foundation. This viscoelastic microbeam is modeled using the Kelvin–Voigt model and the modified couple stress theory. A material length scale parameter is utilized to describe the size-dependent behavior of the viscoelastic microbeam. The visco-Pasternak foundation used in this study contains a viscoelastic medium and a shear layer. This microbeam is subjected to an axial compressive load at the beam ends which can change as a function of time. According to the Euler–Bernoulli beam theory and von-Karman nonlinearity, the time-dependent equations of motion are derived by Hamilton’s principle. The nonlinear equations of motion are directly solved under the simply supported boundary condition. Both time-dependent deflection and viscoelastic buckling load are investigated. Finally, the influences of the material length scale parameter, parameters of the visco-Pasternak foundation and the material viscosity coefficient on the dynamic postbuckling response are studied.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.