Abstract

Abstract In this paper, vibration analysis of the coupled system of double-layered graphene sheets (CS-DLGSs) embedded in a Visco-Pasternak foundation is carried out using the nonlocal elasticity theory of orthotropic plate. The two DLGSs are coupled by an enclosing viscoelastic medium which is simulated as a Visco-Pasternak foundation. Considering the Von Karman nonlinear strain-displacement-relations, the motion equations are derived using the Hamilton's principle. Differential quadrature method (DQM) is applied to obtain the frequency ratio for various boundary conditions. The detailed parametric study is conducted, focusing on the combined effects of the nonlocal parameter, aspect ratio, graphene sheet's size, boundary conditions and the elastic and viscoelastic medium coefficients on the frequency ratio of CS-DLGSs. In this coupled system, two case of DLGSs vibration are investigated and compared with each other: (1) In-phase vibration (2) Out-of-phase vibration. The results indicate that the frequency ratio of the CS-DLGSs is more than the single-layered graphene sheet (SLGS). The results are in good agreement with the previous researches.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call