Abstract

DNA topoisomerases are essential enzymes that regulate DNA topology, the transmission of genetic materials, and gene expressions both in the nucleus and mitochondria. Trapped topoisomerases (Top1 and Top2) in covalent complexes with DNA (Topoisomerase cleavage complexes; Topcc) are detrimental DNA lesions that perturb active genome integrity and trigger cell death. Comprehensive research on the recently discovered enzymes TDP1 and TDP2 exemplify their spectacular role in repairing trapped Topcc as well as in a myriad of diverse DNA lesions. Posttranslational modifications (PTMs), play critical roles in regulating the optimal function of the DNA Damage Response (DDR) proteins. This review summarizes the mechanistic aspects of DNA damage induced by trapped Topcc during transcription and their role in human diseases. We have also highlighted the pivotal role of PTMs in fine-tuning the intricate and multilayered regulatory processes of TDP1 and TDP2 molecular networks for the repair of trapped Topcc.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call