Abstract
NRPSs (non-ribosomal peptide synthetases) and PKSs (polyketide synthases) require post-translational phosphopantetheinylation to become active. This reaction is catalysed by a PPTase (4'-phosphopantetheinyl transferase). The ppt gene of Penicillium chrysogenum, encoding a protein that shares 50% similarity with the stand-alone large PPTases, has been cloned. This gene is present as a single copy in the genome of the wild-type and high-penicillin-producing strains (containing multiple copies of the penicillin gene cluster). Amplification of the ppt gene produced increases in isopenicillin N and benzylpenicillin biosynthesis. A PPTase-defective mutant (Wis54-PPT(-)) was obtained. It required lysine and lacked pigment and penicillin production, but it still synthesized normal levels of roquefortine. The biosynthesis of roquefortine does not appear to involve PPTase-mediated modification of the synthesizing enzymes. The PPT(-) mutant did not require fatty acids, which indicates that activation of the fatty acid synthase is performed by a different PPTase. Complementation of Wis54-PPT(-) with the ppt gene restored lysine biosynthesis, pigmentation and penicillin production, which demonstrates the wide range of processes controlled by this gene.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have