Abstract
Mutual interactions between 17β-estradiol (E 2) and insulin or insulin-like growth factor-I (IGF-1) in the regulation of ornithine decarboxylase (ODC) expression were examined in estrogen-responsive MCF-7 human breast cancer cells. Whereas E 2 only retarded the rapid decay of ODC activity observed upon mitogen withdrawal, both insulin and IGF-1 led to a rapid (< 4 h), net increase in ODC activity that was mediated, at least in part, through their cognate receptors. E 2 synergistically potentiated the induction of ODC by IGF-1, resulting in a 170-fold elevation of enzyme activity after 48 h, as compared with 23- and 70-fold increases caused by E 2 and IGF-1 alone, respectively. Cooperativity was more pronounced at suboptimal peptide concentrations due to a decrease in the half-maximal concentration of insulin or IGF-1 required for ODC induction. Phorbol-12-myristate-13-acetate (PMA) also strongly induced ODC activity in a transient manner, and additively to the effect of IGF-1. IGF-1-and PMA additively increased ODC mRNA level, whereas E 2 alone had no effect on ODC mRNA abundance. IGF-1 increased the half-life of ODC activity by 60%, whereas E 2 or PMA alone had no significant effect on enzyme stability. On the other hand, the simultaneous addition of IGF-1 and either E 2 or PMA cooperatively reduced ODC turnover, resulting in 3.5- and 2-fold increases, respectively, in the half-life of ODC activity. Thus, ODC expression in breast cancer cells is primarily regulated by tyrosine kinase- and protein kinase C-dependent pathways, whereas estrogens increase ODC activity through a novel type of synergistic interaction with growth factors that results in a decreased rate of enzyme turnover.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have