Abstract

SynopsisAn organism’s ability to integrate transient environmental cues experienced during development into molecular and physiological responses forms the basis for adaptive shifts in phenotypic trajectories. During temperature-dependent sex determination (TSD), thermal cues during discrete periods in development coordinate molecular changes that ultimately dictate sexual fate and contribute to patterns of inter- and intra-sexual variation. How these mechanisms interface with dynamic thermal environments in nature remain largely unknown. By deploying thermal loggers in wild nests of the American alligator (Alligator mississippiensis) over two consecutive breeding seasons, we observed that 80% of nests exhibit both male- and female-promoting thermal cues during the thermosensitive period, and of these nests, all exhibited both male- and female-promoting temperatures within the span of a single day. These observations raise a critical question—how are opposing environmental cues integrated into sexually dimorphic transcriptional programs across short temporal scales? To address this question, alligator embryos were exposed to fluctuating temperatures based on nest thermal profiles and sampled over the course of a daily thermal fluctuation. We examined the expression dynamics of upstream genes in the temperature-sensing pathway and find that post-transcriptional alternative splicing and transcript abundance of epigenetic modifier genes JARID2 and KDM6B respond rapidly to thermal fluctuations while transcriptional changes of downstream effector genes, SOX9 and DMRT1, occur on a delayed timescale. Our findings reveal how the basic mechanisms of TSD operate in an ecologically relevant context. We present a hypothetical hierarchical model based on our findings as well as previous studies, in which temperature-sensitive alternative splicing incrementally influences the epigenetic landscape to affect the transcriptional activity of key sex-determining genes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.