Abstract

Understanding the factors that influence morphological evolution is a major goal in biology. One such factor is the ability to acquire and process prey. Prey hardness and evasiveness are important properties that can impact evolution of the jaws. Similar diets and biomechanical systems have repeatedly evolved among fish lineages, providing an opportunity to test for shared patterns of evolution across distantly related organisms. Four-bar linkages are structures often used by animals to transmit force and motion during feeding and that provide an excellent system to understand the impact of diet on morphological and biomechanical evolution. Here, we tested how diet influences the evolutionary dynamics of the oral four-bar linkage system in wrasses (Family: Labridae) and cichlids (Family: Cichlidae). We found that shifts in prey hardness/evasiveness are associated with limited modifications in four-bar geometry across these two distantly related fish lineages. Wrasse and cichlid four-bar systems largely exhibit many-to-one mapping in response to dietary shifts. Across two iconic adaptive radiations of fish, an optimal four-bar geometry has largely been co-opted for different dietary functions during their extensive ecological diversification. Given the exceptional jaw diversity of both lineages, many-to-one mapping of morphology to mechanical properties may be a core feature of fish adaptive radiation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call