Abstract

Sodium layered oxides feature in high capacity and diverse composition, however, are plagued by various issues including limited kinetics and interfacial instability with residual alkali. Conventional substitution/doping and heterogeneous coating are promising to tackle the problems of bulk and surface, respectively, but normally insufficient to address both. Herein, a post-substitution strategy is proposed to modify primary sodium-layered-oxide particles that can simultaneously deal with bulk and surficial issues. As a typical example, post Ti-substitution for O3-NaNi1/3 Fe1/3 Mn1/3 O2 is successfully performed by adjusting thermodynamic driving force, resulting in depth-controllable Ti infusion from surface to bulk, as proved by energy dispersive spectroscopy maps collected at the cross-section. Residual alkali species are efficiently diminished and benefited from the surface-to-bulk osmotic reaction, significantly improving Coulombic efficiency. Moreover, remarkable enhancements in reversible capacity (135mAhg-1 at C/10), rate capability (74% retention at 5C), and long-term cycling stability (80% retention after 300 cycles at 2C) are achieved by manipulating gradient-like Ti distribution in a primary particle that brings with increased kinetics and strengthened interfacial stability, surpassing those given by rough heterotic coating and homogeneous Ti-substitution. Such post-substitution is expected to provide a universal strategy to modify primary layered-oxide particles for developing advanced cathode materials of SIBs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.