Abstract
Orthonormality constraints are common in reduced rank models. They imply that matrix-variate parameters are given as orthonormal column vectors. However, these orthonormality restrictions do not provide identification for all parameters. For this setup, we show how the remaining identification issue can be handled in a Bayesian analysis via post-processing the sampling output according to an appropriately specified loss function. This extends the possibilities for Bayesian inference in reduced rank regression models with a part of the parameter space restricted to the Stiefel manifold. Besides inference, we also discuss model selection in terms of posterior predictive assessment. We illustrate the proposed approach with a simulation study and an empirical application.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.