Abstract

AbstractBoron (B) alloying transforms the magnetoelectric antiferromagnet Cr2O3 into a multifunctional single‐phase material which enables electric field driven π/2 rotation of the Néel vector. Nonvolatile, voltage‐controlled Néel vector rotation is a much‐desired material property in the context of antiferromagnetic spintronics enabling ultralow power, ultrafast, nonvolatile memory, and logic device applications. Néel vector rotation is detected with the help of heavy metal (Pt) Hall‐bars in proximity of pulsed laser deposited B:Cr2O3 films. To facilitate operation of B:Cr2O3‐based devices in CMOS (compementary metal‐oxide semiconductor) environments, the Néel temperature, TN, of the functional film must be tunable to values significantly above room temperature. Cold neutron depth profiling and X‐ray photoemission spectroscopy depth profiling reveal thermally activated B‐accumulation at the B:Cr2O3/ vacuum interface in thin films deposited on Al2O3 substrates. The B‐enrichment is attributed to surface segregation. Magnetotransport data confirm B‐accumulation at the interface within a layer of ≈50 nm thick where the device properties reside. Here TN enhances from 334 K prior to annealing, to 477 K after annealing for several hours. Scaling analysis determines TN as a function of the annealing temperature. Stability of post‐annealing device properties is evident from reproducible Néel vector rotation at 370 K performed over the course of weeks.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call