Abstract

SUMMARY Virtual Deep Seismic Sounding (VDSS) has emerged as a novel method to image the crust–mantle boundary (CMB) and potentially other lithospheric boundaries. In Part 1, we showed that the arrival time and waveform of post-critical SsPmp, the post-critical reflection phase at the CMB used in VDSS, is sensitive to several different attributes of the crust and upper mantle. Here, we synthesize our methodology of deriving Moho depth, average crustal Vp and uppermost-mantle Vp from single-station observations of post-critical SsPmp under a 1-D assumption. We first verify our method with synthetics and then substantiate it with a case study using the Yellowknife and POLARIS arrays in the Slave Craton, Canada. We show good agreement of crustal and upper-mantle properties derived with VDSS with those given by previous active-source experiments and our own P receiver functions (PRF) in our study area. Finally, we propose a PRF-VDSS joint analysis method to constrain average crustal Vp/Vs ratio and composition. Our PRF-VDSS joint analysis shows that the southwest Slave Craton has an intermediate crustal composition, most consistent with a Mesoarchean age.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.