Abstract
Based on the Kirchhoff large deformation theory, the post-buckling behavior of right movable simply supported FGM beam subjected to non-conservative forces and in-plane thermal loading was analyzed in this paper. The temperature-dependent and spatially dependent material properties of the FGM beam were assumed to vary through the thickness. The nonlinear governing equations of FGM beam subjected to a uniform distributed tangential load along the central axis and in-plane thermal loading were derived. Then, a shooting method and Runge-kutta method are employed to numerically solve the resulting equations. The post-buckling equilibrium paths of the FGM beam with different parameters were plotted, and the effects of non-conservative force, temperature, gradient index of FGM on the post-buckling behavior of right movable simply supported FGM beams were analyzed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.