Abstract

Due to the variation in material properties through the thickness, bifurcation buckling cannot generally occur for plates or beams made of functionally graded materials (FGM) with simply supported edges. Further investigation in this paper indicates that FGM beams subjected to an in-plane thermal loading do exhibit some unique and interesting characteristics in both static and dynamic behaviors, particularly when effects of transverse shear deformation and the temperature-dependent material properties are simultaneously taken into account. In the analysis, based on the nonlinear first-order shear deformation beam theory (FBT) and the physical neutral surface concept, governing equations for both the static behavior and the dynamic response of FGM beams subjected to uniform in-plane thermal loading are derived. Then, a shooting method is employed to numerically solve the resulting equations. The material properties of the beams are assumed to be graded in the thickness direction according to a simple power law distribution in terms of the volume fractions of the constituents, and to be temperature-dependent. The effects of material constants, transverse shear deformation, temperature-dependent material properties, in-plane loading and boundary conditions on the nonlinear behavior of FGM beams are discussed in detail.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.